4 Output files
4.1 Output file names
Format of output file names:
[Project Name].[Identifier].[Format]
-The [Project Name] is user defined name of the project, so every input and output files must start with the [Project Name]. -The [Format] is one of csv or dat. csv is spreadsheet format and dat is bindary format.
The [Identifier] is a combination of variables features, that in format of: [Model Unit][Variable Type][Variable Name]. [Model Unit] is one of three options of ele (elemtns), riv (river) or lak (lake). Variable type includes y, v and q that are state variable (in \(L\)), specific flux (in \(L^3/L^2/T\)) and flux (in \(L^3/T\)) respectively.
The list of output files is in following table.
Identifier | Mod unit | Type | Var Name | Meaning | Unit | |
---|---|---|---|---|---|---|
.eleyic. | ele | y | ic | Storage of Interception | \(m\) | |
.eleysnow. | ele | y | snow | Storage of snow equivalence | \(m\) | |
.eleysurf. | ele | y | surf | Storage of surface | \(m\) | |
.eleyunsat. | ele | y | unsat | Storage of vados zone | \(m\) | |
.eleygw. | ele | y | gw | Groundwater head | \(m\) | .GW |
.elevetp. | ele | v | etp | Potential ET | \(\frac{m^3}{m^2 d}\) | |
.eleveta. | ele | v | eta | Actual ET | \(\frac{m^3}{m^2 d}\) | |
.elevetic. | ele | v | etic | Evap of interception | \(\frac{m^3}{m^2 d}\) | |
.elevettr. | ele | v | ettr | Transpiration | \(\frac{m^3}{m^2 d}\) | |
.elevetev. | ele | v | etev | Soil Evaporation | \(\frac{m^3}{m^2 d}\) | |
.elevprcp. | ele | v | prcp | Precipitation | \(\frac{m^3}{m^2 d}\) | |
.elevnetprcp. | ele | v | netprcp | Net Precipitation | \(\frac{m^3}{m^2 d}\) | |
.elevinfil. | ele | v | infil | Infiltration Rate | \(\frac{m^3}{m^2 d}\) | |
.elevexfil. | ele | v | infil | Exfiltration Rate | \(\frac{m^3}{m^2 d}\) | |
.elevrech. | ele | v | rech | Recharge Rate | \(\frac{m^3}{m^2 d}\) | |
.eleqsurf. | ele | q | surf | Overland flow | \(m^3/d\) | |
.eleqsub. | ele | q | sub | Subsurface flow | \(m^3/d\) | |
.rivystage. | riv | y | stage | River Stage | \(m\) | |
.rivqup. | riv | q | up | Flux to upstream | \(m^3/d\) | |
.rivqdown. | riv | q | down | Flux to downstream | \(m^3/d\) | |
.rivqsurf. | riv | q | surf | Flux to landsurface | \(m^3/d\) | |
.rivqsub. | riv | q | sub | Flux to subsurface | \(m^3/d\) |
4.2 Data format in ASCII (.csv) file
N - Number of column of output data, excluding the time column. m - Number of time-step. StartTime - String of date/time (YYYYMMDD or YYYYMMDD.hhmmss)
N | StartTime | ||||
---|---|---|---|---|---|
\(T_1\) | \(v_{1 \cdot 1}\) | \(v_{1 \cdot 2}\) | … | \(v_{1 \cdot N}\) | |
\(T_2\) | \(v_{2 \cdot 1}\) | \(v_{2 \cdot 2}\) | … | \(v_{2 \cdot N}\) | |
\(T_3\) | \(v_{3 \cdot 1}\) | \(v_{3 \cdot 2}\) | … | \(v_{3 \cdot N}\) | |
… | … | … | … | … | |
\(T_{m}\) | \(v_{m \cdot 1}\) | \(v_{m \cdot 2}\) | … | \(v_{m \cdot N}\) |
4.3 Data format in binary (.dat) file
The value saved in binary file are identical from ASCII format, but different data structure.
ID | \(i\) | Value | Format | Length |
---|---|---|---|---|
1 | - | \(N\) | double | 8 |
2 | - | StartTime | double | 8 |
3 | 0 | \(T_1\) | double | 8 |
4 | 1 | \(v_{1 \cdot 1}\) | double | 8 |
5 | 2 | \(v_{1 \cdot 2}\) | double | 8 |
… | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | N | \(v_{1 \cdot N}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 0 | \(T_2\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 1 | \(v_{2 \cdot 1}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 2 | \(v_{2 \cdot 2}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | N | \(v_{2 \cdot N}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 0 | \(T_3\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 1 | \(v_{3 \cdot 1}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | 2 | \(v_{3 \cdot 2}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | N | \(v_{3 \cdot N}\) | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (T-1) + i +3\) | … | … | double | 8 |
\((N+1) * (m-1) + i +3\) | 0 | \(T_{m}\) | double | 8 |
\((N+1) * (m-1) + i +3\) | 1 | \(v_{m \cdot 1}\) | double | 8 |
\((N+1) * (m-1) + i +3\) | 2 | \(v_{m \cdot 2}\) | double | 8 |
\((N+1) * (m-1) + i +3\) | … | … | double | 8 |
\((N+1) * (m-1) + i +3\) | N | \(v_{m \cdot N}\) | double | 8 |